On the resolvent of singular q-Sturm-Liouville operators

نویسندگان

چکیده

In this paper, we investigate the resolvent operator of singular q-Sturm-Liouville problem defined as − ( 1 / q ) D ⁻ ¹ [D y x )] + [r - λ ]y )=0 −(1/q)Dq⁻¹Dqy(x)+r(x)y(x)=λy(x) , with boundary condition 0 c o s β i n = y(0,λ)cosβ+Dq⁻¹y(0,λ)sinβ=0 where ∈ C λ∈C $r$ is a real function on $[0,∞)$, continuous at zero and r L l ∞ r∈Lq,loc¹(0,∞) . We give an integral representation for some properties operator. Furthermore, obtain formula Titchmarsh-Weyl $q$-Sturm-Liouville problem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eigenfunction expansion in the singular case for q-Sturm-Liouville operators

In this work, we prove the existence of a spectral function for singular q-Sturm-Liouville operator. Further, we establish a Parseval equality and expansion formula in eigenfunctions by terms of the spectral function.

متن کامل

On the Spectral Theory of Singular Indefinite Sturm-liouville Operators

We consider a singular Sturm-Liouville differential expression with an indefinite weight function and we show that the corresponding self-adjoint differential operator in a Krein space locally has the same spectral properties as a definitizable operator.

متن کامل

Indefinite Sturm - Liouville operators with the singular critical point zero

We present a new necessary condition for similarity of indefinite Sturm-Liouville operators to self-adjoint operators. This condition is formulated in terms of Weyl-Titchmarsh m-functions. Also we obtain necessary conditions for regularity of the critical points 0 and∞ of J-nonnegative Sturm-Liouville operators. Using this result, we construct several examples of operators with the singular cri...

متن کامل

Random Sturm-Liouville operators

Selfadjoint Sturm-Liouville operators Hω on L2(a, b) with random potentials are considered and it is proven, using positivity conditions, that for almost every ω the operator Hω does not share eigenvalues with a broad family of random operators and in particular with operators generated in the same way as Hω but in L2(ã, b̃) where (ã, b̃) ⊂ (a, b).

متن کامل

Eigenvalue Asymptotics for Sturm–liouville Operators with Singular Potentials

We derive eigenvalue asymptotics for Sturm–Liouville operators with singular complex-valued potentials from the space W 2 (0, 1), α ∈ [0, 1], and Dirichlet or Neumann–Dirichlet boundary conditions. We also give application of the obtained results to the inverse spectral problem of recovering the potential by these two spectra.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications Faculty of Sciences University of Ankara. Series A1: mathematics and statistics

سال: 2021

ISSN: ['1303-5991']

DOI: https://doi.org/10.31801/cfsuasmas.866753